48 research outputs found

    Editorial

    Get PDF

    Assessment of high-frequency steady-state visual evoked potentials from below-the-hairline areas for a brain-computer interface based on Depth-of-Field

    Get PDF
    Background and Objective: Recently, a promising Brain-Computer Interface based on Steady-State Visual Evoked Potential (SSVEP-BCI) was proposed, which composed of two stimuli presented together in the center of the subject's field of view, but at different depth planes (Depth-of-Field setup). Thus, users were easily able to select one of them by shifting their eye focus. However, in that work, EEG signals were collected through electrodes placed on occipital and parietal regions (hair-covered areas), which demanded a long preparation time. Also, that work used low-frequency stimuli, which can produce visual fatigue and increase the risk of photosensitive epileptic seizures. In order to improve the practicality and visual comfort, this work proposes a BCI based on Depth-of-Field using the high-frequency SSVEP response measured from below-the-hairline areas (behind-the-ears). Methods: Two high-frequency stimuli (31 Hz and 32 Hz) were used in a Depth-of-Field setup to study the SSVEP response from behind-the-ears (TP9 and TP10). Multivariate Spectral F-test (MSFT) method was used to verify the elicited response. Afterwards, a BCI was proposed to command a mobile robot in a virtual reality environment. The commands were recognized through Temporally Local Multivariate Synchronization Index (TMSI) method. Results: The data analysis reveal that the focused stimuli elicit distinguishable SSVEP response when measured from hairless areas, in spite of the fact that the non-focused stimulus is also present in the field of view. Also, our BCI shows a satisfactory result, reaching average accuracy of 91.6% and Information Transfer Rate (ITR) of 5.3 bits/min. Conclusion: These findings contribute to the development of more safe and practical BCI.Fil: Floriano, Alan. Universidade Federal do Espírito Santo; BrasilFil: Delisle Rodriguez, Denis. Universidade Federal do Espírito Santo; BrasilFil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; ArgentinaFil: Bastos Filho, Teodiano Freire. Universidade Federal do Espírito Santo; Brasi

    Molecular dynamics of the COVID-19 pandemic in Espirito Santo (Brazil) and border States

    Get PDF
    This study represents the first overview of the epidemiological dynamics of SARS-CoV-2 in Espirito Santo (ES) State, Brazil, filling in knowledge on this topic, observing data collected in the State, and aiming at understanding the epidemiological dynamics of the virus in ES, as well as its possible routes of transmission and dissemination. . Our results highlight that, so far, nine lineages have been identified with ES State. The B.1.1.33 lineage was the first with the highest occurrence in ES, remaining predominant until September 2020. The second predominant lineage was Gamma, representing 45% of the samples. The Delta lineage appears on the State scene, proving to be the next dominant lineage. This research allowed us to understand how the lineages advanced and were distributed in the State, which is important for future work, also making it possible to guide sanitary control measures. Data analyses were made through the GISAID database for ES State showed that the pandemic in the State has been evolving dynamically with lineage replacements over the months since the first notification

    Evaluating the Influence of Chromatic and Luminance Stimuli on SSVEPs from Behind-the-Ears and Occipital Areas

    No full text
    This work presents a study of chromatic and luminance stimuli in low-, medium-, and high-frequency stimulation to evoke steady-state visual evoked potential (SSVEP) in the behind-the-ears area. Twelve healthy subjects participated in this study. The electroencephalogram (EEG) was measured on occipital (Oz) and left and right temporal (TP9 and TP10) areas. The SSVEP was evaluated in terms of amplitude, signal-to-noise ratio (SNR), and detection accuracy using power spectral density analysis (PSDA), canonical correlation analysis (CCA), and temporally local multivariate synchronization index (TMSI) methods. It was found that stimuli based on suitable color and luminance elicited stronger SSVEP in the behind-the-ears area, and that the response of the SSVEP was related to the flickering frequency and the color of the stimuli. Thus, green-red stimulus elicited the highest SSVEP in medium-frequency range, and green-blue stimulus elicited the highest SSVEP in high-frequency range, reaching detection accuracy rates higher than 80%. These findings will aid in the development of more comfortable, accurate and stable BCIs with electrodes positioned on the behind-the-ears (hairless) areas

    Object Recognition For An Agent-Based Controlled Mobile Robot

    No full text
    : Object recognition is an important task associated to mobile robots that transport pieces between cells in a flexible production system or between different sections in an industrial plant. Upon detecting any obstacle, the recognition system must be able to inform which obstacle is in the robot path. Thus, the control system should be able to change the current robot behavior, in order to deviate from the detected obstacle or to follow it. However, it is normally necessary to recognize just a few obstacles that are commonly present in the robot operation environment. In this paper, a system is proposed to recognize some objects that can appear in the path of a mobile robot. This system is based on information coming from ultrasonic transducers and a digital monochromatic camera. Keywords: Mobile Robots; Sensors; Ultrasonic Transducers; Computer Vision; Agents. 1. INTRODUCTION A differential drive mobile robot is under construction at the Electrical Engineering Department of the Feder..
    corecore